Roll No.
Total No. of Questions: 09]
[Total No. of Pages : 02
B.Tech. (Sem. - $1^{\text {st }}$) ENGINEERING MATHEMATICS - I SUBJECT CODE: BTAM - 101 Paper ID : [A1101] (2011 Batch)

Time : 03 Hours
Maximum Marks : 60
Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Five questions from Section - B \& C.
3) Select atleast Two questions from Section - B \& C.

Section - A

Q1)
(2 Marks each)
a) Identify thesymmetries of the curve $r^{2}=\cos \theta$.
b) Find the Cartesian co-ordinates of the point ($5, \tan ^{-1}(4 / 3)$) given in polar co-ordi nates.
c) If $u=\mathrm{F}(x-y, y-z, z-x)$, then show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
d) If \vec{u} is a differentiable vector function of t of constant magnitude, then show that $\vec{u} \cdot \frac{d \mathrm{u}}{d \mathrm{t}}=0$
e) Change the Cartesian integral $\int_{0}^{1} \int_{x}^{\sqrt{2 x-x^{2}}} f(x, y) d x d y$ into an equival ent polar integral.
f) For what val ues of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ the vector function $\overrightarrow{\mathrm{f}}=(x+2 y+a z) \vec{i}-$ $(\mathrm{b} x-3 y-z) \vec{j}+(4 x+\mathrm{c} y+2 z) \vec{k}$ is irrotational.
g) Give the physical interpretation of divergence of a vector point function.
h) What surface is represented by $\frac{\mathrm{y}^{2}}{2}+\frac{\mathrm{z}^{2}}{3}-\frac{x^{2}}{2}=1$?
i) If $x=r \cos \theta$ and $y=r \sin \theta$, then find the value of $\frac{\partial(x, y)}{\partial(r, \theta)}$.
j) Given that $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$, then prove that $\left(\frac{\partial y}{\partial x}\right) z\left(\frac{\partial z}{\partial y}\right) x\left(\frac{\partial x}{\partial z}\right) y=-1$
Section - B
(8 Marks each)
Q2) a) Show that radius of curvature at any point (x, y) of the hypocycloid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ is threetimes the perpendi cular distance from the origin to the tangent at (x, y)
b) Trace the curve $r=1+\cos \theta$ by giving all sal ient features in detail.

Q3) a) Find the area included between the curve $x y^{2}=4 a^{2}(2 \mathrm{a}-x)$ and its asymptote
b) The curve $y^{2}(\mathrm{a}+x)=x^{2}(3 \mathrm{a}-x)$ is revolved about the axis of x . Find the volume generated by the loop.
Q4) a) If $\theta=\mathrm{t}^{n} \mathrm{e}^{\frac{r^{2}}{4 t}}$ then find the value of n that will make $\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \theta}{\partial r}\right)=\frac{\partial \theta}{\partial t}$
b) State Euler's theorem and use it to prove that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \sin 2 u, \text { where } u=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y}
$$

Q5) a) The temperature T at any point (x, y, z) in the space is $T=400 x y z^{2}$. Use lagrange's multiplier method to find the highest temperature on the surface of the unit sphere $x^{2}+y^{2}+z^{2}=1$.
b) Expand $x^{2} y+3 y-2$ in ascending powers of $x-1$ and $y+2$ by using Taylor's theorem.
Section - C
(8 Marks each)
Q6) a) Eval uate: $\int_{0}^{12-x} \int x y d x d y$, by changing the order of integration.
b) Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $y+z=4$ and $z=0$.
Q7) a) Prove that: grad div $\vec{F}=$ curl curl $\vec{F}+\nabla^{2} \vec{F}$.
b) Usethe stoke's theorem to eval uate $\int_{c}[(x+2 y) \mathrm{d} x+(x-z) \mathrm{dy}+(\mathrm{y}-\mathrm{z}) \mathrm{dz}]$

Where C is the boundary of the triangle with vertices $(2,0,0),(0,3,0)$, and $(0,0,6)$ oriented in the anti-clock wise direction.
Q8) a) Find the directional derivative of $\mathrm{f}(x, y, z)=x y^{2}+y z^{3}$ at $(2,-1,1)$ in the direction of $\vec{i}+2 \vec{j}+2 \vec{K}$.
b) Find the area lying inside the cardiode $r=2(1+\cos \theta)$ and outside the circle $r=2$.
Q9) a) State green's theorem in plane and use it to eval uate $\int(y-\sin x) d x+\cos x d y$, where C is the triangle enclosed by $y=0$,
$x=\frac{\pi}{2}$, and $y=(2 / \pi) x$.
b) State Divergence theorem use it to eval uate $\int_{\mathrm{S}} \vec{F} \cdot \bar{n} d s$ where $\vec{F}=\left(4 x^{3} \vec{i}-x^{2} y \vec{j}+x^{2} z \vec{k}\right.$ and S is the surface of the cylinder $x^{2}+y^{2}=a^{2}$ bounded by the planes $z=0$ and $z=\mathrm{b}$.
$\cos 800580$

